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ABSTRACT

Amundsen, L., Reitan, A. and Arntsen, B., 2005. Geometric analysis of data-driven
inversion/depth-imaging. Journal of Seismic Exploration, 14: 51-62.

Based on simple geometric analysis of a one-dimensional acoustic piecewise-constant layered
medium, this paper presents a methodology that provides a new perspective on how the actual
velocity potential (actual velocity and layer interfaces) can be estimated from single scattering data.
The non-linear inversion method requires no information of the velocities of the subsurface except
for the velocity of the uppermost layer which is the reference medium where the source and receiver
are situated at finite distance above the scattering medium.

The inversion scheme consists of three steps. In step one the "Born potential" depth profile
is computed by constant-velocity imaging of the single scattering data. Generally, interfaces in the
Born potential are severely mislocated in depth compared to those of the true velocity potential. In
step two, a "squeezed" velocity potential is estimated by amplitude-scaling the Born potential profile.
Step three estimates the actual depth-dependent velocity potential by stretching the squeezed potential
so that its interfaces are moved towards the correct depth. Contrary to conventional,
velocity-dependent depth migration, which requires an accurate estimate of the velocities of the
actual medium to obtain a proper image, the depth imaging in step three requires the squeezed
velocity potential with interfaces matching those of the Born potential depth profile. This is exactly
the velocity potential that is estimated in step two.

The step of forward modeling that is generally encountered in non-linear inversion schemes
is not required. Furthermore, the three inversion steps require no information of the medium other
than that provided by the Born potential. In this respect, the inverse solution for the actual velocity
potential is fully data-driven.



In a series of papers related to the inverse scattering series Weglein and
coworkers describe a general approach to the problem of inversely
reconstructing the medium ("scattering potential") from reflection seismic data
without introducing a priori information about the subsurface [Weglein et al.
(2000, 2002, 2003), Innanen (2003), Innanen and Weglein (2003), Shaw et al.
(2004), Shaw (2005), Zhang and Weglein (2005), Zhang et al. (2005), and Liu
et al. (2005a, 2005b)]. The scattering potential to be recovered is expanded in
a series, each term of which is determined in terms of the scattering data and
a reference Green’s function. Further, Weglein and coworkers show the validity
of the concept of "subseries” within the expansion of the potential, where each
subseries is associated with a specific inversion task that can be carried out
separately. The four subseries associated with the inversion process are: (1)
Free-surface multiple removal, (2) internal multiple attenuation or elimination,
(3) spatial location of reflectors in the subsurface, and (4) identification of
changes in medium properties across reflectors. The two last subseries work on
primaries (multiple-free data). These two subseries have been cast by Innanen
(2003) and Shaw (2005) as algorithms that, through specific non-linear
operations acting on the constant-velocity migrated data, create a map to the
imaged and/or inverted output. The primaries thus are those reflection events
that are used to determine the locations and properties (contrast in wave
velocities) of the reflector that caused their observation (recording at the
surface).

The seismic theories based on the inverse scattering series hold a
promising potential to revitalize among others amplitude versus angle (AVA)
analysis and depth imaging. During the last few years, other significant work
with the same objective has been published. Berkhout and Verschuur (2001)
introduce operator-driven common-focus-point (CFP) migration which is
considered to be a generalized approach to seismic depth imaging. Another new
approach to automated seismic imaging is that based on a modified
Lippmann-Schwinger equation proposed by lkelle {2005), which combines the
demultiple process, velocity estimation and imaging in one single algorithm.

Inverse scattering problems are concerned with differential equations in
unbounded media. The full inverse scattering problem of seismic, viewed as a
three-dimensional (3D) problem, is one of the most challenging problems of
geophysics and mathematical physics. In this paper, therefore, influenced by the
leading-order closed-form one-dimensional (1D) depth imaging algorithm
presented in this journal by Shaw et al. (2003), and the 1D imaging/amplitude
inversion algorithm described by Innanen (2003), we shall be concerned with
1D inverse acoustic single scattering from layered media. Applying simple
analysis to the geometry of a piecewise-constant medium (which is straight lines
parallel to the depth axis in the coordinates depth and velocity), our objective
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is to demonstrate how the actual velocity potential of the medium can be
precisely estimated, both with respect to layer velocities and depth location of
interfaces, from the Born potential associated with constant-velocity imaging of
single-scattered data.

In a broad sense, the process by which an object is excited to radiate an
outgoing field due to the incoming field of an external source of acoustic, elastic
or electromagnetic radiation is called scattering. By this definition, reflection,
refraction, and diffraction of acoustic, elastic, and electromagnetic waves are
subsumed under scattering. For the 1D acoustic piecewise-constant medium that
we consider here, the terms "primary reflection" and "single scattering" are
synonymous. Primary reflection is an expression used in the field of reflection
seismic to indicate a reflection event which has been reflected only once and
hence is not a multiple. In the field of scattering the same process is most often
referred to as single scattering, but is sometimes also referred to as primary
scattering.

Note that the inverse scattering problem to be analyzed in the present
paper is limited to that of processing single scattering events. As any data from
a layered medium will contain both primaries and multiples, data have to go
through a preprocessing step to remove all types of multiples before applying
the proposed inversion/depth imaging steps to be presented. The preprocessing
s in agreement with the standard practice to seek to attenuate all multiples from
the seismic data before using primaries for imaging changes in the medium’s
properties. On its own, the single scattering model in a layered medium is an
idealization realized only when the incident wave from the distant source is
scattered only once at each interface in the medium. One therefore could be lead
to think that the single scattering model should only be used when the medium
changes slowly with depth with no strong discontinuities of the medium
parameters. However, the realization is within practical reach with the use of
new methods which have been developed to attenuate and eliminate internal
multiples [Weglein et al. (1997), and Ramirez and Weglein (2005)].

We make four remarks. First, the complete mathematics related to our
new inverse solution is published elsewhere (Amundsen et al., 2005). In the
present paper we derive the three-step inverse solution in a painless manner by
studying the relationship between the actual velocity potential (which here
characterizes the difference between a constant-velocity reference medium and
the actual medium) and the Born potential which is obtained by imaging in the
constant-velocity reference medium. When the actual medium is piecewise-
constant, the relationship is determined by its simple geometry, which is a set
of straight lines in the depth-velocity coordinates. To distinguish the procedure
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to be developed in the field of non-iterative data- drlven or velocity-independent
acoustic (seismic) imaging of primaries from 1D layered media. Any new

methodology can straightforwardly be benchmarked towards the one proposed
here.

Second, even though we restrict the inverse scattering analysis to 1D
acoustic scattering, many of the elements of the inverse scattering theory are
general, and extend to higher dimensions as well as to elastic media. Work is
in progress to study inverse acoustic and elastic multidimensional single
scattering. For stratified media, relative to a constant background, a 3D
multi-offset scheme has the potential to both estimate the velocities and density
of the subsurface and move reflectors towards their correct depth location. In
this respect, the generalized scheme holds a potential to become a lithology-fluid
prediction tool. Results will be reported as they are obtained. Research related
to if and how the proposed inverse scattering concept can be extended to depth
image data from 3D media which vary both vertically and laterally is a topic of
future research. The reader is referred to Liu et al. (2005a, 2005b) for the
application of the inverse scattering series for vertically and laterally varying
media to velocity-independent depth imaging.

Third, scattering is an important tool in studying the structure and
dynamics of matter and is used in many disciplines of the physical, mathematical
and engineering sciences as an investigative probe. The method we present in
this paper and its multidimensional extensions can find applications, in
particular, in the fields of acoustics, electromagnetics, and medical imaging.
Forth, we refer the reader to Gladwell (1993) for an introduction to some of the
mathematics that has been developed in an attempt to solve the one-dimensional
inverse scattering problem for layered media.

In the discussion to follow we shall first introduce the Born potential
associated with constant-velocity imaging of the primary reflection response. We
shall then show that the actual velocity potential of the medium can be
"squeezed" by non-linearly compressing the depth axis in such a way that the
interface locations of the squeezed potential matches the interface locations of
the Born potential. The inverse transform, which stretches the squeezed potential
back to the actual velocity potential is then given. In the inverse scattering
problem, of course, neither the actual velocity potential nor the squeezed
velocity potential are known. Only the Born potential can directly be computed.
However, we show that the squeezed potential can be precisely estimated from
the Born potential by simple amplitude-scaling of the Born potential. Thus, the
scaled Born potential is the key to solve our inverse scattering problem since it
mimics the squeezed velocity potential which we, as we have just stated, know
how to stretch to obtain an estimate of the actual velocity potential. This defines
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the three basic elements of data-driven inversion/depth imaging: (1)
constant-velocity migration of the primary reflection response yields the Born
potential, (2) amplitude-scaling of the Born potential yields an estimate of the
squeezed velocity potential, and (3) stretching of the estimated squeezed
potential yields an estimate of the actual velocity potential. Step (2) is a simple
form of amplitude-inversion, whereas step (3) is a migration. Therefore, the full
inversion process for the medium parameters in 1D can be described as
constant-velocity (partial) migration - inversion - residual migration.

THE INVERSE SCATTERING SOLUTION

We consider the high-velocity contrast piecewise-constant 1D acoustic
ten-layer medium with velocity c¢(z) shown in Fig. 1a and listed in Table 1. The
depth axis is positive downwards, and the layers, numbered from zero to ten,
have thicknesses h, and velocities c,. The source and receiver are both located
at depth z = 0 in layer zero. The number of interfaces is N = 9, where the
depth to interface n is

n—1
z,= Y h . (1)
=0

The reflection coefficient for a downgoing wave at depth z, is

Rn = (cn - cn—l)/(cn + cn—l)

Table 1. Ten-layer model with reference velocity ¢, = 1500 m/s. Here, z, is the actual layer depth,

» S

Z,p is the layer depth obtained from Born constant-velocity imaging, c, is the actual layer velocity,

¢, is the estimated layer velocity, o is the actual velocity potential, and R, is the reflection
coefficient.

n z,[m] Z,g[m] c,[m/s] ¢,[m/s] o, R,

0 1500 1500 0

1 300 300 1900 1900 0.38 0.118
2 400 378.9 2000 2000 0.44 0.026
3 500 453.9 2100 2101 0.49 0.024
4 600 525.4 2200 2203 0.54 0.023
5 700 593.6 2600 2620 0.67 0.083
6 800 651.3 2300 2307 0.57  -0.061
7 1000 781.7 2200 20K 0S4 _n 0
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Fig. 1. "Squeezing" and "stretching” of velocity potentials. (a) The actual velocity model, c(z). (b)
The actual velocity potential, o(z). (c) Squeezing of the actual velocity potential according to
equation (8). Comparison of the squeezed velocity potential & (solid line) and the Born potential g
(dashed line) shows that the layer boundaries are at identical depths. Note that & can be estimated
from oy according to equation (10). (d) Stretching of the squeezed velocity potential & according to
equation (9) restores the actual velocity potential, .
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Taking into account transmission losses, the primary reflection from
interface n is measured at depth z = 0 with amplitude

n—1

R=R , R=RII0-R), n=23...N. 3)

i=1

The normalized primary reflection response then can be represented as

N
&) = ) RSt~ t) , @)
n=1

where 6(t) is the Dirac delta-function, and t, = 2 Y hi/c; is the arrival time of
primary n. The primary reflection response from the ten-layer model is

displayed in Fig. 2. The medium is conveniently described by a scattering
“velocity potential"

a@) =1 = [e/c@P &)

that characterizes the difference between the reference medium with known
velocity ¢, and the actual medium with velocity c(z). The scattering velocity
potential is plotted in Fig. 1b. The Born potential o(z) shown by the dashed
line in Fig. lc is obtained by data trace integration, also known as linear
migration-inversion (Weglein et al., 2003), according to

2zlc,y N

an(@) =4 | dvd@) = 4 Y RHE - z,) . 6)
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n—-1
ZnB - CO Z h}/CJ , (7)
i=0

computed linearly using their traveltimes together with the constant reference
velocity. Since a(z) = 0 for z < z,, the first reflector is always imaged at its
correct depth, z,5 = z,. The deeper interfaces are severely mislocated, as shown
in Table 1 for the ten-layer model. Given the Born potential ag(z) associated
with constant-velocity imaging of the single scattering data, our goal is to
estimate the actual velocity potential a(z).

Before we proceed on the inverse problem, however, assume that the
actual velocity potential «(z) is known. Observe then that it is possible to
non-linearly shift the interfaces of the actual velocity potential onto the
interfaces of the Born potential by the transformation

a@) = &z — | dz'[1 = {1 — a@)}"]) . ®)

Equation (8) shows that traversing along the depth axis of the actual
velocity potential «, say from depth z,_, to z,, corresponds to traversing along
the depth axis of the shifted velocity potential & from depth z,_, g to z,5. For the
1D acoustic piecewise-constant medium, one may verify this on a piece of paper
by evaluating by hand the integral inside equation (8). In particular, for the
ten-layer model in Fig. 1b, it is straightforward to show that

oz) = &lz)) ,
o(z,) = &(z,p) forn = 2,...,N,

Thus, the actual velocity potential « can be shifted in such a way that its
layer interfaces coincide with the layer interfaces of the Born potential «z. The
shifted velocity potential & is called the "squeezed" velocity potential since it
appears like the actual velocity potential when the depth axis is squeezed. Note
that it is only the layer interface positions that are affected by the squeeze
operation. For the ten-layer medium, é&(z) is displayed in solid line in Fig. lc.
Observe that the interfaces of &(z) and ay(z) match. Inside layer n, the

amplitude of & equals that of «. The number of interfaces is preserved, of
course.

We are now led to consider if there is an inverse operation. In the case
we know the squeezed potential &(z), can we restore the actual velocity potential
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«(z)? The answer is: yes, it is possible to "stretch" the layer interfaces of the
squeezed velocity potential onto the layer interfaces of the actual velocity
potential by the transformation

&) = oz + § d2[{l - a@)} ™ - 1)) . ©)

Fig. 1d shows that the stretch procedure restores the actual velocity
potential. The number of interfaces is unaffected. Stated differently, equation
(9) shows that traversing along the depth axis of &, say from depth Z,.1 10 Z;p,
corresponds to traversing along the depth axis of « from depth z,_, to z,. In
particular, for the ten-layer model, you do not need a computer to perform the
integral inside equation (9) to verify that

&z = alz)) ,
&(z5) = ofz,) forn =2,... N.
Note that no approximations have been made as yet.

Let us return to the inverse acoustic scattering problem, where we have
at our disposal the primary reflection events from which the Born potential ay(z)
can be computed by trace integration. The important question that develops from
the above squeeze and stretch discussion is the following: can one find an
amplitude scaling factor A(z) that approximately corrects the Born amplitude
onto the squeezed velocity potential amplitude, according to

a(z) = A(Z)ay(z) . (10)

If there is such a scaling, then the scaled Born potential & = Aoy is the quantity
that is required for finding the actual velocity potential, by stretching the depth
axis of &. For layer one, the exact amplitude scaling function can be found.
First, invert the reflection coefficient R, to give c/c; = (1 — R)AL + R)).
Second, insert this expression into the definition (5) of the velocity potential c,

and use that a3 = 4R,. This yields the exact layer-one amplitude scaling
function

Ay =djfogg = (1 + /477 .

It turns out that this form of amplitude scaling is an excellent
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into equation (10). It is straightforward but somewhat tedious to show that the
amplitude scaling function is precise for those acoustic layered media where the
product of reflection coefficients from any three interfaces is negligible
compared to the reflection coefficients themselves. Note that A(z) depends on
the Born amplitude cy(z) only. This implies that the squeezed velocity potential
&(z) can be precisely estimated from the Born potential og(z) only. For the
ten-layer model in Fig. la, there is no visual difference between the exact
squeezed velocity potential &(z) and the scaled Born potential, A(Z)og(z).
Therefore, such a display is omitted.

We summarize the discussion to this point. The analysis of the simple
geometry of a piecewise-constant 1D layered medium has shown that two
operations are required to estimate the actual velocity potential from the Born
potential. First, the squeezed velocity potential & is estimated by scaling the
Born potential according to equation (10). Next, the actual velocity potential is
found by stretching the depth axis of the scaled Born potential (or equivalently,
the estimated squeezed velocity potential) according to equation (9). The scaling
is a simple inversion that estimates the actual velocities, not within the actual
layer interfaces, but within the layer interfaces provided by the Born potential
derived by the constant velocity imaging. These are the velocities that are
required for depth imaging, which is aimed to move interfaces towards their
correct location in depth. Since the scaling (inversion) and stretching (imaging)

only depend on the Born profile information, this inverse scattering method is
fully data-driven.

We remark that from the computation of & according to equation (10) the
layer-velocities are readily estimated by use of equation (5). In Table 1 we
present the layer-velocity estimates ¢ along with other quantities related to the
model in Fig. 1. Observe that the layer-velocity estimates are very precise.

ON MULTI-OFFSET DATA-DRIVEN INVERSION/DEPTH IMAGING IN STRATIFIED 3D
ACOUSTIC AND ELASTIC MEDIA

The present paper gives an inverse solution to the one-dimensional
acoustic scattering problem in piecewise-constant layered media. We here want
to indicate that this solution can be extended to invert the multi-offset primary
reflection response of a 3D acoustic or elastic piecewise-constant stratified
medium. The main difference between the 1D scheme presented here and the
3D scheme is related to the Born potential. In 3D stratified elastic media the
Born potential is offset-dependent, or angle-dependent when the data are
processed in the 7-p domain. The amplitude and angle-dependency of the Born
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potential then can be used to estimate squeezed velocity and density potentials
in the stratified subsurface. For PP single scattering, both the squeezed velocity
and density potentials can be depth imaged (stretched) by using information of
the estimated squeezed P-wave velocity potential.

CONCLUSIONS

The ultimate objective of inverse scattering is to determine the medium
and its nature from measurements external to the object under investigation.
From the primary reflection response associated with a one-dimensional acoustic
piecewise-constant layered medium we have derived from geometric analysis of
the medium a data-driven three-step procedure for reconstructing the medium.
First, the Born potential is obtained by constant-velocity depth migration of
single scattering data. Second, the Born potential amplitude is scaled by
multiplying the Born amplitude by an amplitude function of itself. The scaling
which is a simple form of inversion, gives a squeezed velocity potential
estimate, which in step three is non-linearly stretched (migrated) with respect
to the depth axis. The non-linear stretch function is a function of the squeezed
velocity potential, which again is a function of the Born potential. Thus, the
solution for the actual velocity potential is obtained by amplitude and shift
correcting the Born potential. No information other than the Born potential is
required. In the nomenclature of seismic processing the three steps can be
described by the sequence constant-velocity (partial) migration — inversion —
residual migration.

Work is in progress to extend the concept presented here to acoustic and
elastic multidimensional media. For stratified media, relative to a constant
background, an extension of the current scheme has the potential to both
estimate the velocities and density of the subsurface and move reflectors towards
their correct depth location. In this case, the method has the potential to become
a lithology-fluid prediction tool. Imaging of mislocated reflectors (obtained from

constant-velocity migration) in laterally varying media is a topic of future
research.
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